Exercise 16

In a murder investigation, the temperature of the corpse was $32.5^{\circ} \mathrm{C}$ at $1: 30 \mathrm{pm}$ and $30.3^{\circ} \mathrm{C}$ an hour later. Normal body temperature is $37.0^{\circ} \mathrm{C}$ and the temperature of the surroundings was $20.0^{\circ} \mathrm{C}$. When did the murder take place?

Solution

Assume that the rate of decrease of the corpse's temperature is proportional to the difference between the corpse's temperature and the surrounding temperature T_{s}.

$$
\frac{d T}{d t} \propto-\left(T-T_{s}\right)
$$

The minus sign is included so that when the surroundings are cooler (hotter) than the corpse, $d T / d t$ is negative (positive). Change this proportionality to an equation by introducing a positive constant k.

$$
\frac{d T}{d t}=-k\left(T-T_{s}\right)
$$

To solve this differential equation for T, make the substitution $y=T-T_{S}$.

$$
\frac{d T}{d t}=-k y
$$

Differentiate both sides of the substitution with respect to t to write the derivative in terms of y : $\frac{d y}{d t}=\frac{d}{d t}\left(T-T_{s}\right)=\frac{d T}{d t}$.

$$
\frac{d y}{d t}=-k y
$$

Divide both sides by y.

$$
\frac{1}{y} \frac{d y}{d t}=-k
$$

Rewrite the left side by using the chain rule.

$$
\frac{d}{d t} \ln y=-k
$$

The function you take a derivative of to get $-k$ is $-k t+C$, where C is any constant.

$$
\ln y=-k t+C
$$

Exponentiate both sides to get y.

$$
\begin{aligned}
e^{\ln y} & =e^{-k t+C} \\
y & =e^{C} e^{-k t}
\end{aligned}
$$

Use a new constant A for e^{C}.

$$
y(t)=A e^{-k t}
$$

Now that the differential equation has been solved, change back to the original variable T, the corpse's temperature.

$$
T-T_{s}=A e^{-k t}
$$

As a result,

$$
T(t)=T_{s}+A e^{-k t} .
$$

Since the surrounding temperature is $20.0^{\circ} \mathrm{C}, T_{s}=20$.

$$
T(t)=20+A e^{-k t}
$$

Let $t=0$ be the time of murder. The corpse's temperature at this time is $37^{\circ} \mathrm{C}$.

$$
37=20+A e^{-k(0)} \quad \rightarrow \quad A=37-20=17
$$

Consequently,

$$
T(t)=20+17 e^{-k t} .
$$

Let t_{0} be the time in hours from the murder until 1:30 PM. Use the two given temperatures at the two given times to form a system of equations for the unknowns, k and t_{0}.

$$
\left.\begin{array}{rl}
T\left(t_{0}\right)=20+17 e^{-k t_{0}} & =32.5 \\
T\left(t_{0}+1\right)=20+17 e^{-k\left(t_{0}+1\right)} & =30.3
\end{array}\right\}
$$

Substitute the first equation into the second one.

$$
\begin{gathered}
(12.5) e^{-k}=10.3 \\
e^{-k}=\frac{10.3}{12.5} \\
e^{-k}=0.824 \\
\ln e^{-k}=\ln 0.824 \\
(-k) \ln e=\ln 0.824 \\
k=-\ln 0.824
\end{gathered}
$$

Substitute this result back into the first equation.

$$
\begin{gathered}
17 e^{-k t_{0}}=12.5 \\
17 e^{-(-\ln 0.824) t_{0}}=12.5 \\
17 e^{\ln (0.824)^{t_{0}}}=12.5 \\
17(0.824)^{t_{0}}=12.5 \\
0.824^{t_{0}}=\frac{12.5}{17} \\
0.824^{t_{0}}=\frac{25}{34} \\
\ln 0.824^{t_{0}}=\ln \frac{25}{34} \\
t_{0} \ln 0.824=\ln \frac{25}{34} \\
t_{0}=\frac{\ln \frac{25}{34}}{\ln 0.824} \approx 1.58837
\end{gathered}
$$

Find out how many minutes 0.58837 hours is.

$$
0.58837 \text { hours } \times \frac{60 \text { minutes }}{1 \text { hour }} \approx 35.3024 \text { minutes }
$$

Find out how many seconds 0.3024 minutes is.

$$
0.3024 \text { minutes } \times \frac{60 \text { seconds }}{1 \text { minute }} \approx 18.1411 \text { seconds }
$$

An hour and 35 minutes and 18 seconds prior to $1: 30$ PM is 11:54:42 AM.

